Calculus

A Closer Look at a Limit Proof

(A new question of the week) A recent question asked about one of our explanations of the limit of x2 (which we have discussed at least five times).  This led to a deeper examination of what was said; and as I have looked through this and other pages, I have realized that it would be …

What’s the Point of Limits?

(An archive question of the week) Many calculus courses start out with a chapter on limits; or they may be introduced in a “precalculus” course. But too often the concept is not sufficiently motivated. What good are limits? Why did they have to be invented? Are they as simple as they seem? Why is an epsilon-delta …

Epsilons, Deltas, and Limits — Oh, My!

Using the epsilon-delta definition of a limit in calculus can be challenging. (That’s why, after using it for a few examples, we derive some easier techniques, and never use the definition directly unless we have to!) We’ll start with an overview of what the definition means, and then look at several examples of how it …

A Tank with a Conical End

(An archive question of the week) Last time I surveyed what we have said about the volume of liquid in various kinds of tanks. One more special case I ran across deserved more detailed attention, because it demonstrates in detail how to do the calculations without much knowledge of calculus. The problem Here is the …

Measuring Water in a Tank

Over the years, we have received a huge number of questions asking about how to find the amount of liquid (water, oil, …) in a tank, usually a horizontal cylindrical tank. The simplest case involves a rather complicated formula; from there, we can reverse the formula (finding the depth for a given volume), or we …

Numerical Approximation Methods: When Algebra Doesn’t Work

The problems students see in class are usually only those that can be solved by the methods they have been taught. Too many students conclude that algebra can solve anything! But the reality is that if you just wrote an equation at random, it probably could not be solved algebraically. When students ask us about …

Derivative of Arcsin: From the Definition

(A new question of the week) In Monday’s post about fallacies in calculus, one of them used the definition of the derivative (or rather, misused it). Today we’ll look at a short question about applying that same definition, that came in last month.

Integration: More Than One Way, More Than One Answer

(An archive question of the week) In searching for answers to include in Monday’s post on calculus fallacies, I ran across a long discussion that illustrates some important aspects of methods of integration. In particular, there are often multiple ways to find an integral (the best not necessarily being the one taught in your textbook); …

1=0? Calculus Says So [or Not]

“False Proofs”, where seemingly good logic leads to nonsensical conclusions, can be a good way to learn the boundaries of reality — what to look out for when you are doing real math. We have a FAQ on the subject; there we discuss several well-known fallacies based in algebra, and have links to others. Today, …

Two Solutions to an ODE

(New Question of the Week) This recent question involves an ordinary differential equation (ODE) and the relation between different solutions. It illustrates common difficulties in interpreting what a problem is asking for, as well as some communication problems involving language and notation.