Definitions

An Introduction to Trigonometry

(An archive question of the week) While I’m showing some recent explanations of basic trigonometry techniques, this is a good time to look at an even more basic explanation of the essentials of the subject for a beginner. Right triangle trigonometry Here is the question, from 2001: Trigonometry in a Nutshell I’m in 8th grade …

An Introduction to Trigonometry Read More »

Frequently Questioned Answers: 0.999… = 1

Having looked at two common questions in probability that are often challenged, let’s turn to the realm of numbers. Non-terminating decimals are inherently problematic, and one particular example causes difficulty for many, even after they fully accept the mathematics of it. Our FAQ page on this topic, at 0.9999… = 1, is very brief, and …

Frequently Questioned Answers: 0.999… = 1 Read More »

Zero Divided By Zero: Undefined and Indeterminate

Back in January, I discussed the issue of division by zero. There is a special case of that that causes even more trouble, in every field from arithmetic to calculus: zero divided by zero. I’ll look at several typical questions that we answered at different levels. Conflicting rules for division? Let’s start here: Zero Laws …

Zero Divided By Zero: Undefined and Indeterminate Read More »

Greatest Common Divisor: Extending the Definition

Having just talked about definition issues in geometry, I thought a recent, short question related to a definition would be of interest. We know what the Greatest Common Divisor (GCD, also called the Greatest Common Factor, GCF, or the Highest Common Factor, HCF) of two numbers is; or do we? Negative GCD? Here is the …

Greatest Common Divisor: Extending the Definition Read More »

More on Faces, Edges, and Vertices: The Euler Polyhedral Formula

Last time we looked at how to count the parts of a polyhedron, and a mention was made of Euler’s Formula (also called the Descartes-Euler Polyhedral Formula), which says that for any polyhedron, with V vertices, E edges, and F faces, V – E + F = 2. We should take a close look at that simple, yet amazing, …

More on Faces, Edges, and Vertices: The Euler Polyhedral Formula Read More »