Euler’s Formula: Complex Numbers as Exponents

Last week we explored how the polar form of complex numbers gives multiplication a simple geometric meaning. Here we’ll go one more step, and express polar form exponentially, which makes DeMoivre’s theorem trivial, and gives us a simple notation to replace “cis”.

Negative x Negative = Positive? Abstract Proofs

Last time we looked at explanations for the product of negative numbers in terms of various concrete models or examples. But it really requires a mathematical proof, as we’ll explain and demonstrate here, first with a couple different proofs, then with the bigger picture, giving the context of such proofs.

Why Does a² + b² = c² in a Hyperbola?

(A new question of the week) In an ellipse, \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) with focal distance c, parameters a, b, and c all make natural sense, and it is easy enough to see why \(a^2 = b^2 + c^2\). But in the hyperbola, \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\), the equivalent relationship, \(a^2 + b^2 = c^2\), is not nearly as natural, nor …

Why Does a² + b² = c² in a Hyperbola? Read More »

Equivalent Definitions of e

(A new question of the week) It is not unusual for mathematicians to define a concept in multiple ways, which can be proved to be equivalent. One definition may lead to a theorem, which another presentation uses as the definition, from which the original definition can be proved as a theorem. Here, in yet another …

Equivalent Definitions of e Read More »

Fibonacci, Pascal, and Induction

A couple weeks ago, while looking at word problems involving the Fibonacci sequence, we saw two answers to the same problem, one involving Fibonacci and the other using combinations that formed an interesting pattern in Pascal’s Triangle. I promised a proof of the relationship, and it’s time to do that. And while we’re there, since …

Fibonacci, Pascal, and Induction Read More »