# Month: December 2020

## What is Mathematical Induction?

Last week’s exploration of a problem involving the Fibonacci sequence, has led me to delve into that and related concepts. In order to say much about the Fibonacci numbers, we have to first explore the concept of proof by mathematical induction. We’ll introduce it here, and then dig deeper next time.

## Disappearing Area?

We’ve been looking at dissection puzzles, where we cut an object into pieces, and rearrange them. Here we’ll examine a mystery posed by two different puzzles, each of which seems to change the area by rearranging the pieces. The answer combines the marvelous Fibonacci numbers and [spoiler alert!] how easily we misjudge areas.

## Cutting and Rearranging a Rectangle

Last week we looked at a puzzle about cutting a square cake into equal pieces. Here we will be trying to cut a rectangle into two pieces and rearranging them to make a different rectangle. Three of the questions we’ll look at came within two weeks in 2001, but we’ll take them in a logical …

## A Geometrical Limit

(A new question of the week) We usually see limits applied to functions in a calculus class. An interesting question from late October deals with a limit in a geometrical construction based on a function. We’ll be seeing how to discover a proof, then several alternative proofs, and finally what the answer means.

## Cutting a Square Cake Equally

For the next couple weeks, we’ll look at a few “dissection problems”, which involve cutting a shape in various ways. Here, we look at what turns out to be a simple problem, though it seems at first that it would be complicated: dividing a cake into pieces with the same amount of cake and the …

## Writing a Proof: Substance, then Style

(A new question of the week) A question from last month provides an opportunity to show how to develop an algebraic proof of a combinatorial identity involving factorials. We’ll be looking over Doctor Rick’s shoulder as he guides a student through the maze. I’ll also add in a previously published version of the same proof …

## Broken Sticks, Triangles, and Probability II

Last week, we looked at two solutions to the problem of finding the probability that you can make a triangle using three pieces of a stick, if we cut it at two independently chosen, random locations. This time, we look another solution to that problem, and a similar solution to the version in which we …