Proof

Proving the Law of Cosines

Last week we looked at several proofs of the Law of Sines. Here we will see a couple proofs of the Law of Cosines; they are more or less equivalent, but take different perspectives – even one from before trigonometry and algebra were invented! Proof using coordinates First, here is a question we looked at …

Proving the Law of Cosines Read More »

Proving the Law of Sines

Two of the most useful facts in trigonometry are the Law of Sines and the Law of Cosines (sometimes called the Sine Rule or Sine Formula, and the Cosine Rule or Cosine Formula). Over the years we were often asked where they come from (or are just asked about them, and reflexively offer proofs). There …

Proving the Law of Sines Read More »

The Locker Problem

A classic problem we’ve seen hundreds of times involves students opening and closing lockers. I have often told people that, believe it or not, they could find the answer by searching the Ask Dr. Math site for the word “locker”. But I prefer to give them a reference to one of the answers in which …

The Locker Problem Read More »

False Proofs: Geometry

We have been looking at some classic “false proofs” or “fallacies”, where a seemingly valid proof shows something clearly false to be true. The goal is to learn from these, how to distinguish a valid proof from an error. In a post from last year, What Role Should a Figure Play in a Proof?, I …

False Proofs: Geometry Read More »

False Proofs: Complex Numbers

Last time we looked at some false proofs, which are often used to help students understand what does and does not constitute a valid proof, and in particular, to remind them to be careful in algebraic proofs, looking for issues like division by zero and taking square roots. This time, we’ll look at two similar …

False Proofs: Complex Numbers Read More »

Why Do We Need Proofs?

One aspect of mathematics that students often struggle with, particularly in geometry (which traditionally has been where proof is introduced), is writing proofs. Why do we need to learn about proofs? Why are proofs needed in the first place? Here are a few answers we’ve given to these questions. Why does math need proofs? First, …

Why Do We Need Proofs? Read More »

More on Uncountable Irrationals

(An archive question of the week) While I was researching for the post on uncountable sets, I ran across a discussion that didn’t quite fit, but raises interesting questions about how countable and uncountable sets can fit together. How can the rational numbers be countable, but the irrational numbers, which are closely intertwined with them, …

More on Uncountable Irrationals Read More »

Frequently Questioned Answers: Uncountable Infinities

We could continue forever discussing questions whose answers are frequently questioned; but let’s finish by looking at infinity itself. The concept is impossible to fully grasp, because we are finite, and all of our experience is finite. Mathematicians have worked out ways to deal with infinity, though, and the results are often counter-intuitive. That means …

Frequently Questioned Answers: Uncountable Infinities Read More »