More on Uncountable Irrationals

(An archive question of the week) While I was researching for the post on uncountable sets, I ran across a discussion that didn’t quite fit, but raises interesting questions about how countable and uncountable sets can fit together. How can the rational numbers be countable, but the irrational numbers, which are closely intertwined with them, …

More on Uncountable Irrationals Read More »

Uncertain Sequences

We’ve often pointed out that pattern or sequence problems, when nothing is given but a list of numbers, are not really math, in the sense that there is no one correct answer. They are psychology questions: What would a math teacher think is an interesting sequence to ask about? Mathematically, any number could come next, …

Uncertain Sequences Read More »

When Math Doesn’t Make Sense

(Archive Question of the Week) One of my favorite questions, from 2001, asked about how to convince a skeptical friend, when a clear mathematical result goes against their intuition. Why should they believe the math? It led me into thoughts about the relationship of intuition to math, whether (and when) math can be trusted, and …

When Math Doesn’t Make Sense Read More »