# Calculus

## Writing a Riemann Sum as an Integral

(A new question of the week) Riemann sums are used in defining the definite integral. But they can also be used in reverse: Sometimes you can be given the limit of a summation and asked to read it as a Riemann sum, and then turn it into an integral. Usually this is fairly straightforward; but …

## Fundamental Theorem of Calculus: a Tale of Two Parts

(A new question of the week) A recent question about the application of the Fundamental Theorem of Calculus provided an opportunity to clarify what the theorem means in practice, and specifically how the two parts are and are not related. Misunderstandings like these are probably more common than many instructors realize! We’ll also glance at …

## A Surprising Route to a Differential Equation

(A new question of the week) We are often asked to help a student understand a solution to a problem, obtained from a book or a website, that is not fully explained there. Here, we’ll look at a rather odd demonstration that a function satisfies a differential equation, both figuring out what the author did, …

## Limits: Recognizing Indeterminate Forms

(A new question of the week) Limits of indeterminate forms like ∞ – ∞ require us first to recognize the form, and then, often, use L’Hôpital’s rule (also called L’Hospital’s rule, as we’ll be seeing it here), or some other method. Today’s question will touch on all stages of this work for three examples, but …

## Limits: What Does “Approach” Mean?

(A new question of the week) We’ve looked at the concept of limit of a function from several perspectives, including why they are needed, and what the definition means. Here we have a more fundamental question, which applies to both functions and sequences: What do we mean when we say a value approaches some number? …

## Euler’s Formula: Complex Numbers as Exponents

Last week we explored how the polar form of complex numbers gives multiplication a simple geometric meaning. Here we’ll go one more step, and express polar form exponentially, which makes DeMoivre’s theorem trivial, and gives us a simple notation to replace “cis”.

## Limit of sin(x)/x

Last week we looked at some recent questions about limits, where we focused first on what limits are, in terms of graphs or tables, and then on finding them by algebraic simplification. This week, we’ll look at two old questions about a trigonometric limit that can’t be determined that way: sin(x)/x, as x approaches zero.

## Limit Basics: Tables, Graphs, and Simplification

(A new question of the week) I am looking back at recent questions I’ve skipped because, though having useful content, the discussions were cut short. In the two cases we’ll see here, the student who asked a question never read the final answer, perhaps because it went to their spam folder, so the discussion was …

## Subtleties of Inverse Trig Functions

(A new question of the week) It is not uncommon for students to ask about why they get different answers using different methods. Usually the answer is that the answers are really equivalent. This time, the answers really are different! This was partly the result of being taught an incomplete technique, omitting important cautions. And …

## Two Tricky Questions on Tangent Lines

(A new question of the week) Sometimes we have lots of quick questions and a number of long discussions, neither of which seems suitable for a post. This time I’ve chosen to combine two distantly related questions, one recent and one from several months ago, both involving tangent lines to functions.