# Alternatives

## What is Adjusted Frequency in a Histogram?

Some time ago we looked into the meaning of histograms, on the way to the concept of the Probability Density Function. A recent question focused on the histogram itself, in a way that will add to that discussion. We’ll learn about frequency density, which was overlooked there, and discover an alternative way to label a …

## Anything to the Zero Power: Why 1?

We’ve been looking at oddities of zero. Because “nothing” behaves differently than “something”, operations with it can be surprising. Although students learn that $$x^0=1$$ for any non-zero number x, they often wonder, why?? I’ve selected a few out of at least a dozen such questions in our archive.

## Comparing Logarithms With Different Bases

Logarithms are not hard to work with when only one base is involved (as in most real-life problems); but they can be challenging when each log has a different base. Here, we’ll look at a few problems in which we have to compare logarithms with different bases, showing various strategies.

(A new question of the week) Looking for a new topic, I realized that a recent question involves determinants, and an older one provides the background for that. We’ll continue the series on determinants by seeing how they can be used in finding the inverse of a matrix, and how something called the adjugate matrix …

## How Many A’s Can Make This Many B’s in This Much Time?

A popular kind of word problem tells us how many people (or cats, or hens, …) it takes to make some number of houses (or kill some number of mice, or lay some number of eggs) in some amount of time, and then asks us to fill in one of the blanks for a different …

## A Surprising Route to a Differential Equation

(A new question of the week) We are often asked to help a student understand a solution to a problem, obtained from a book or a website, that is not fully explained there. Here, we’ll look at a rather odd demonstration that a function satisfies a differential equation, both figuring out what the author did, …

## Parentheses and the Associative and Distributive Properties

(A new question of the week) This week, we’ll look at two recent questions about how parentheses (brackets) are used, how they relate to the properties we use in algebra that let us add or drop them, and the related concept of factoring a polynomial. They are examples of how student questions can touch on …

## A Rational Equation, With and Without Extraneous Roots

(A new question of the week) Extraneous roots can not only confuse the final solution to a problem; they can also make it harder to solve in the first place if you don’t deal with them early. Here is a relatively complicated rational equation, two questions about its solutions, and several ways to make it …

## An Age Proportion Problem: Multiple Methods

(A new question of the week) Some problems can be done either by algebra or by basic arithmetic methods and some creativity; and although algebra generally makes work easier by making it routine, sometimes special-purpose thinking (once you have thought it!) can be quicker. Here we have a problem where a creative method didn’t quite …

## Many Ways to Solve a Proportion

Last week we looked at a set of special rules for working with proportions, which have been largely replaced by the more general “tool” of algebra (the “Swiss army knife” of problem solving, which can do the job of many specialized tools), though the latter can still be useful. We still find that many students …