# Alternatives

## Broken Sticks, Triangles, and Probability I

This week we look at questions about how likely it is that you can make a triangle out of three random pieces of a stick. As always in probability, the first issue comes in deciding how the process is to be done (that is, what does it mean to break a stick randomly?); we’ll also …

## Intersecting a Parabola in Two Points

(A new question of the week) A good way to check (and hopefully build) a student’s depth of understanding is to assign non-routine problems, in which familiar ideas are twisted around so you have to come at them from a different direction. Here we’ll look at a question about a graph that can be solved …

## Weighted Averages: Averaging Averages or Rates

In our series on averages, last week we introduced the idea of the weighted average (or weighted mean), where each item has a weight attached. The classic examples all involve grade averages in various ways. This time, we’ll look at how weighted averages arise when you need to average several averages together, something we touched …

## Multiplying Fractions and Decimals

(A new question of the week) Let’s look at a quick question from mid-September, that had a number of different answers. In some ways, this is an easy question; but we’ll take it a little further, so keep reading to the end. Can I multiply a fraction and a decimal? Azraf asked: Can I multiply …

## The Symmetric Derivative

To close out this series on the definition of the derivative, I want to look at a few questions about alternative versions of the definition, primarily the “symmetric difference quotient”. We’ll see that this leads to a slightly different result, not always equivalent to the original, and we’ll observe some associated ways that calculators can …

## Challenging Inverse Trig and Polynomial Equations

(A new question of the week) We have had a lot of interesting questions recently. This one involved inverse trigonometric equations that led to cubic and quartic equations. We’ll observe here one of the benefits of embedding the original discussion in a blog format where I can add information that will help you, the reader, …

## Multiplying Vectors III: Going Beyond

(An archive question of the week) We’ve looked at the scalar (dot) product and the vector (cross) product; but there is one answer in the Ask Dr. Math archives that was too long to fit in either post. Here we’ll see again where the two familiar products come from, while looking deeper into the math …

## Oblique Triangles in Applications

Having just looked at how to solve oblique triangles, let’s look at a couple “word problems” (applications) involving such triangles. We’ll be using the Law of Sines, and also exploring alternative methods of solution. A tilted tree Let’s start with this real application from 1999: Will the Tree Hit the House? There is a tree …

## Many Ways to Find the Least Common Multiple

Last time, we looked at three ways to find a GCF (Greatest Common Factor). Here we’ll see the corresponding ways to find an LCM (Least Common Multiple); next time we’ll examine another method, which in its full form finds both at once. (Note that the Least Common Denominator of fractions is just the Least Common …