# NQOTW

## Using Symmetry to Find a Definite Integral

(A new question of the week) Definite integrals can sometimes be solved by finding an antiderivative; but when that is either difficult or impossible, there may be special tricks available. Here we’ll lead a student gradually to a solution using symmetry; and then we’ll look at an earlier problem that used essentially the same trick …

## How Long to Attain Unanimity?

(A new question of the week) Suppose we have a question that can be answered with Yes, No, or Maybe, and that whenever two people with different opinions meet, their discussion convinces each of them that neither can be right, so they both change to the other opinion. Given initial numbers of people with each …

## Implicit Differentiation: What to Do When It’s “Wrong”

(A new question of the week) Having just discussed the Chain Rule and the Product and Quotient Rules, a recent question about implicit differentiation (which we covered in depth two years ago) fits in nicely. This raises an important issue: when you get an apparently wrong answer, you may just have done something wise that …

## Slow and Fast Ways to Solve a Probability Problem

Last week’s discussion reminded me of another question, from July, about a probability problem that was solved in a hard (but educational) way and an easy way. This instance is more extreme, and, due to its length, requires extreme editing in order to fit here.

## More On Mixing Trig Functions

I’ve had several occasions in face-to-face tutoring lately to refer to a past post on mixing (that is, composition) of trig and inverse trig functions. Several recent questions have touched directly or indirectly on this same general idea and extended it, so I thought I’d post them.

## Squares, Roots, and Negative Numbers

(New questions of the week) Two recent questions (five days apart, from high school students in different countries) were about nearly the same thing, and fit nicely together: What do you get when you square a square root, or take the square root of a square, but don’t know the sign of the number ahead …

## A Challenging Triangle Trigonometry Problem

(A new question of the week) Trigonometry identities can be hard to prove, and more so when they are specifically about a triangle.

## Monotonic Functions, Inequalities, and Optimization

Looking for a cluster of questions on similar topics, I found several from this year in which monotonic functions (functions that either always increase, or always decrease) provide shortcuts for various types of problems (optimization with or without calculus, and also algebraic inequalities). We’ll look at a few of these.

## Comparing Logarithms With Different Bases

Logarithms are not hard to work with when only one base is involved (as in most real-life problems); but they can be challenging when each log has a different base. Here, we’ll look at a few problems in which we have to compare logarithms with different bases, showing various strategies.

## Exponential Growth: Surprisingly Flexible

Two recent questions from the same student involve exponential functions: We can express different kinds of growth all using one base, called e; or we can use different bases (and ignore horizontal scaling transformations). And we can use different transformation to obtain the same graph. This relates to some important properties of exponential functions.