More On Mixing Trig Functions

I’ve had several occasions in face-to-face tutoring lately to refer to a past post on mixing (that is, composition) of trig and inverse trig functions. Several recent questions have touched directly or indirectly on this same general idea and extended it, so I thought I’d post them.

Monotonic Functions, Inequalities, and Optimization

Looking for a cluster of questions on similar topics, I found several from this year in which monotonic functions (functions that either always increase, or always decrease) provide shortcuts for various types of problems (optimization with or without calculus, and also algebraic inequalities). We’ll look at a few of these.

Comparing Logarithms With Different Bases

Logarithms are not hard to work with when only one base is involved (as in most real-life problems); but they can be challenging when each log has a different base. Here, we’ll look at a few problems in which we have to compare logarithms with different bases, showing various strategies.

Exponential Growth: Surprisingly Flexible

Two recent questions from the same student involve exponential functions: We can express different kinds of growth all using one base, called e; or we can use different bases (and ignore horizontal scaling transformations). And we can use different transformation to obtain the same graph. This relates to some important properties of exponential functions.

Intersecting Powers and Roots

Here is an interesting little question. Its answer is simple, and not hard to see just by graphing examples; yet the algebra is easy to get wrong, as we’ll see several times. And subtle errors deserve study.