Trigonometry

Law of Sines vs Law of Cosines: Which is Better?

Last month, four students from the same class wrote to us with the same question: Which is more accurate, the Law of Sines or the Law of Cosines? Those led to a couple deeper discussions, as we explored the context.

More On Mixing Trig Functions

I’ve had several occasions in face-to-face tutoring lately to refer to a past post on mixing (that is, composition) of trig and inverse trig functions. Several recent questions have touched directly or indirectly on this same general idea and extended it, so I thought I’d post them.

Inverse Trig Notation: What Do sin^-1 and arcsin Mean?

Since we’ve been looking at an example of ambiguity in notation, let’s look at a very different one. There is a lot to be confused by in inverse trigonometry! We’ll try to untangle the notations of \(\sin^{-1}\) and \(\arcsin\).

Three Trigonometric Inequalities

(A new question of the week) We often solve basic trigonometric equations; but a recent set of questions dealt with challenging trigonometric inequalities, which bring with them a new set of issues. We’ll look at several of those here, which combine trig with polynomials, rational functions, and more. Each will illustrate something new to watch …

Three Trigonometric Inequalities Read More »

Euler’s Formula: Complex Numbers as Exponents

Last week we explored how the polar form of complex numbers gives multiplication a simple geometric meaning. Here we’ll go one more step, and express polar form exponentially, which makes DeMoivre’s theorem trivial, and gives us a simple notation to replace “cis”.