Why Does a² + b² = c² in a Hyperbola?

(A new question of the week) In an ellipse, \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) with focal distance c, parameters a, b, and c all make natural sense, and it is easy enough to see why \(a^2 = b^2 + c^2\). But in the hyperbola, \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\), the equivalent relationship, \(a^2 + b^2 = c^2\), is not nearly as natural, nor …

Why Does a² + b² = c² in a Hyperbola? Read More »

Trying to Solve a Strange Log Equation

(A new question of the week) We’ll look at a very complicated logarithmic equation, which leads to quartic equations and some very interesting graphs. We won’t find a fully satisfying solution method, but we’ll have some fun trying – and reveal the fallibility of at least one Math Doctor!

Two Word Problems About Factors and Sums

(A new question of the week) A couple recent questions involved factoring numbers, in interesting ways. One involves the volume and perimeter of a block of cubes, and the other involves finding numbers with a given HCF (Highest Common Factor) and sum. Both illustrate thinking through a non-routine problem about factors.

Graphing a Reciprocal Function

There are a number of standard techniques for graphing functions, such as transforming simple functions, or finding asymptotes and holes for rational functions, and using calculus to find slopes. What if you have a rational function of a trig  function, and can’t yet use calculus to figure it out? We’ll look at how we can …

Graphing a Reciprocal Function Read More »