The Golden Ratio and Fibonacci

We’re looking at the Fibonacci sequence, and have seen connections to a number called phi (φ or \(\phi\)), commonly called the Golden Ratio. I want to look at some geometrical connections and other interesting facts about this number before we get back to the Fibonacci numbers themselves and some inductive proofs involving them.

Angles in a Star

(A new question of the week) I like problems that can be solved in multiple ways, which can train us in seeing the world from different perspectives. Late in November we dealt with a pair of such questions involving angles in star-like figures.

Disappearing Area?

We’ve been looking at dissection puzzles, where we cut an object into pieces, and rearrange them. Here we’ll examine a mystery posed by two different puzzles, each of which seems to change the area by rearranging the pieces. The answer combines the marvelous Fibonacci numbers and [spoiler alert!] how easily we misjudge areas.

A Geometrical Limit

(A new question of the week) We usually see limits applied to functions in a calculus class. An interesting question from late October deals with a limit in a geometrical construction based on a function. We’ll be seeing how to discover a proof, then several alternative proofs, and finally what the answer means.