# Geometry

## Finding Length of a Roll: Facing Reality

Last time we looked at how to find the length of material on a roll, making some necessary simplifications. Here, I want to look at some variations on that: first, about carpet in particular, and then about wire on a spool.

## Finding the Length of a Rolled-up Carpet

One of the more frequent questions we had on Ask Dr. Math was about how to find the length of material (carpet, paper, wire, etc.) on a roll, knowing only the inner and outer diameters and something else: the thickness of the material, or the number of turns, or the original size of the roll. …

## Finding a Locus: Algebra and Geometry

Last time we looked at the meaning of the concept of locus. This time, we’ll explore seven examples, from two students. We’ll look at both algebraic (equation) and geometric (description) perspectives.

## What is the Meaning of “Locus”?

A recent question asked about an interesting locus, which led me to realize we haven’t talked about that topic in general. Here we’ll look at what a locus is, using three simple examples, and then dig into a question about the wording.

## Looks Like a Frustum, But …

Last time we looked at how to find the volume of a frustum of a pyramid or cone. But sometimes what looks at first like a rectangular frustum actually isn’t. This case turns out to have a more general formula almost as nice as what we have for an actual frustum. We’ll discover that the …

## Frustums: Not Frustrating but Fascinating

We’ve looked in the past at volumes and surface areas of familiar geometric shapes like spheres, pyramids, and cones; but more can be done. If we cut parallel to the base of a pyramid or cone, the result is called a frustum (no, not a frustrum!). Let’s derive some formulas, which will be remarkably simple.

## Probability That a Random Triangle is Acute

Some time ago we looked into the probability that a random set of sides (from, say, a broken stick) form a triangle. A recent question asked about the probability that a random triangle is acute (all angles acute) or obtuse (at least one angle obtuse), which led to more discussion of what it means for …

## Finding an Unknown Angle: Trig or Geometry

I am always interested in problems that can be solved in different ways, particularly because this can give a student a chance to be creative, as well as learning from experience that you don’t have to do it “the teacher’s way”. Here we’ll use trigonometry, and two different ways to add lines to a figure …

## How Can 3×3 Determinants Give Both Area and Volume?

(A new question of the week) A recent question asked for the connection between two different ways to use determinants geometrically: to find the area of a triangle, and to find the volume of a pyramid (or the area of a parallelogram and the volume of a parallelepiped). Last time we looked at what a …

## Geometric and Algebraic Meaning of Determinants

A recent question led me to look back in the Ask Dr. Math archives for questions about the definition and deeper meaning of determinants. Next week, we’ll see another old question for additional background, followed by the new question.