The Book Stacking Problem

(An archive question of the week) A recent question asked about a well-known problem about stacking books (or cards, or dominoes) so that the top one extends beyond the base, giving a link to one of many explanations of it – but one, like many, that doesn’t quite fill in all the details. Doctor Rick …

The Book Stacking Problem Read More »

Fine Points on Polygons and Polyhedra

Last time, looking at degenerate polygons, I mentioned some other issues pertaining to the definition of a polygon. Let’s take the opportunity to look at them. This post supplements what was said previously in What is a Polyhedron … Really?

Degenerate Polygons

We’ve been looking at degenerate figures, starting with the most interesting case, degenerate conic sections. But other things can also be degenerate, so we should take a look at some of these, which perhaps arise even more often. We’ll examine triangles that aren’t triangles, rectangles that aren’t rectangles, and bigger polygons – or smaller polygons! …

Degenerate Polygons Read More »

Degenerate Conics I: Mystery of the Missing Case

Degenerate cases are instances of a concept that are just on the edge of fitting its definition. They occur when we stretch a definition to its limits, at which point some of the original properties remain, but others break. We’ll start here with common instances of the phenomenon, in conic sections, pursuing the elusive case …

Degenerate Conics I: Mystery of the Missing Case Read More »

A Tunnel Through the Earth

I have a very short problem this week: How deep will you go if you dig a straight tunnel through the earth, how long will it be, and what angle do you have to start at?

A Hole in a Cube

(A new question of the week) Here is an interesting little question about how drilling a hole affects volume and surface area. We’ll have one answer, and several explanations.