# Definitions

## Frequently Questioned Answers: 0.999… = 1

Having looked at two common questions in probability that are often challenged, let’s turn to the realm of numbers. Non-terminating decimals are inherently problematic, and one particular example causes difficulty for many, even after they fully accept the mathematics of it. Our FAQ page on this topic, at 0.9999… = 1, is very brief, and …

## Zero Divided By Zero: Undefined and Indeterminate

Back in January, I discussed the issue of division by zero. There is a special case of that that causes even more trouble, in every field from arithmetic to calculus: zero divided by zero. I’ll look at several typical questions that we answered at different levels. Conflicting rules for division? Let’s start here: Zero Laws …

## Greatest Common Divisor: Extending the Definition

Having just talked about definition issues in geometry, I thought a recent, short question related to a definition would be of interest. We know what the Greatest Common Divisor (GCD, also called the Greatest Common Factor, GCF, or the Highest Common Factor, HCF) of two numbers is; or do we? Negative GCD? Here is the …

## Edges and Faces: A Matter of Definition

(An archive question of the week) Having looked at the matter of faces, edges, and vertices from several different perspectives, I want to look at one more question and answer, to tie it all together. Definitions The question is from 2008: Definitions of Edge and Face in 2D and 3D Different resources define “edge” in …

## Do Curved Surfaces Have Faces, Edges, and Vertices?

Having discussed how to count faces, edges, and vertices of polyhedra, and then looked at Euler’s formula that relates them (not only in polyhedra but in graphs on planes and other surfaces), we need to consider a question we have received at least 100 times: are these terms even defined (or defined correctly) for cylinders, …

## More on Faces, Edges, and Vertices: The Euler Polyhedral Formula

Last time we looked at how to count the parts of a polyhedron, and a mention was made of Euler’s Formula (also called the Descartes-Euler Polyhedral Formula), which says that for any polyhedron, with V vertices, E edges, and F faces, V – E + F = 2. We should take a close look at that simple, yet amazing, …

## Epsilons, Deltas, and Limits — Oh, My!

Using the epsilon-delta definition of a limit in calculus can be challenging. (That’s why, after using it for a few examples, we derive some easier techniques, and never use the definition directly unless we have to!) We’ll start with an overview of what the definition means, and then look at several examples of how it …

## Three Meanings of “Percentile”

(An archive problem of the week) Having just discussed quartiles, I want to look at related issues concerning percentiles. There, I briefly mentioned different perspectives on the concept of quartile, and focused on differences in the details of the calculations; here I will focus mostly on the different perspectives, and then touch on variations in …

## The Many Meanings of “Quartile”

Some time ago I discussed various issues pertaining to the concept of median in statistics. The same issues, and more, affect the concept of quartile (the median being the second quartile), so much so that different statistical software packages produce many different answers for quartiles. I have seen this affect students, who are taught one …

## What is Multiplication … Really?

I want to close out this series on multiplication with a very different kind of question. We have seen that multiplication of natural numbers can be modeled as a repeated sum of the multiplicand, taken the number of times indicated by the multiplier; and that the terms “multiplier” and “multiplicand” reflect only this model, not …