# Methods

## Help with Factoring: Trinomials

(A new question of the week) I recently had a pleasant discussion of factoring, with the kind of student for whom I returned to teaching: one who has been away from math for a while, and with greater maturity has the determination to succeed. We’ll see several examples of the “ac-grouping” method of factoring a …

## Implicit Differentiation: Explanation, Examples, and a Surprise

In response to a recent request for information about implicit differentiation (hi, Brian!), let’s take a look at that topic. It happens to be distantly related to Friday’s topic, which was about implicitly defined curves. We’ll start with a thorough explanation, and then look at several specific examples, capping it off with a weird one.

## Solving an Oblique Triangle, Part II

Last time we looked at solving triangles in the ASA, AAS, SSS, and SAS cases. We have one more case, which tends to be a little more complicated: the “ambiguous case”, SSA.

## Solving an Oblique Triangle, Part I

Having just looked at the Law of Sines and the Law of Cosines, let’s consider how they can be applied to solving an oblique triangle – that is, finding missing parts of a triangle that is not a right triangle. The Ask Dr. Math site’s Trigonometry FAQ includes a concise summary of a procedure for …

## How Do You Simplify a Fraction?

Last time we examined the basic concept of equivalent fractions – the fact that different fractions can represent the same value. We saw that there will be one way to write a fraction that is “in lowest terms” – no other fraction with the same value will involve smaller numbers, and all the others can …

## Trigonometric Equations: An Overview

(A new question of the week) This week and next I will look at a recent discussion on trigonometry that dug deep into two different issues: solving equations, and proving identities. These are good summaries of how to approach these common kinds of problems. This week: solving basic trig equations.

## L’Hôpital’s Rule: Harder Cases

Last time we looked at the basics of L’Hôpital’s Rule, which applies to limits of the form or , and ways to understand or prove it. Here, we’ll consider a variety of questions we’ve received about less direct application of the rule. We’ll see ways to apply it to other indeterminate forms (, , ), and what …

## L’Hôpital’s Rule: What and Why

The next few posts will look at a powerful technique for finding limits in calculus, called L’Hôpital’s Rule. Here, we’ll introduce what it is, and why it works. In the next post we’ll examine some harder cases.