Why

How (and Why) Long Division of Polynomials Works

Having just looked at the Rational Zero Theorem, I realized we’ve never covered how to divide polynomials, which is used closely with that theorem. Here we’ll look at long division, and then, next time, at synthetic division, its efficient version.

Standard Deviation and Its Rivals

We’ve had a number of questions about “measures of dispersion”, such as standard deviation, which tell us how much data spreads out, as opposed to “measures of central tendency”, which tell us where the middle of the data is (as we discussed in Three Kinds of “Average” and Mean, Median, Mode: Which is Best?). Why …

Standard Deviation and Its Rivals Read More »

Is Zero Positive or Negative? Even or Odd?

Last week we looked at some basics about zero; now let’s look at whether zero is positive or negative, and then at the topic of the recent comment that triggered this series: whether zero is even or odd.

Is Zero Really a Number?

A recent comment on the site raised questions about zero, beyond what we have discussed in the past about division by zero. Here we’ll look at basic questions about whether zero is actually a number at all, and then about multiplication by zero, which confuses a lot of people.

Polynomials: Why Are Terms What They Are?

A question last week (Hi, Zahraa!) led me to dig  up some old discussions of how we define a polynomial (or monomial, or term) and, specifically, why the exponents have to be non-negative integers. Why can we only multiply, and not divide by, variables? Since we’ve been looking at polynomials, let’s continue.

Why Are Functions Defined as They Are?

Last week we looked at what functions are; but many students wonder why it all matters. What makes them useful? What makes functions worth distinguishing from non-functions? Why do we make the distinction we do? We love “why” questions, because they make us think more deeply!