Geometry

More on Faces, Edges, and Vertices: The Euler Polyhedral Formula

Last time we looked at how to count the parts of a polyhedron, and a mention was made of Euler’s Formula (also called the Descartes-Euler Polyhedral Formula), which says that for any polyhedron, with V vertices, E edges, and F faces, V – E + F = 2. We should take a close look at that simple, yet amazing, …

More on Faces, Edges, and Vertices: The Euler Polyhedral Formula Read More »

Counting Faces, Edges, and Vertices

Over the years, we have had many questions, often from young students, asking how to count the parts (faces, edges, vertices) of a polyhedron (cube, prism, pyramid, etc.). The task requires understanding of terms, visualization of three-dimensional objects, and organizing the parts for accurate counting — all important skills. How can we help with this?

A Tank with a Conical End

(An archive question of the week) Last time I surveyed what we have said about the volume of liquid in various kinds of tanks. One more special case I ran across deserved more detailed attention, because it demonstrates in detail how to do the calculations without much knowledge of calculus. The problem Here is the …

A Tank with a Conical End Read More »

Who Moved My Postulate?

Last time we looked at the question of why we have to have postulates, which are not proved, rather than being able to prove everything. Often, this question is mixed together with a different question: Why do different texts give different lists of postulates, so that what one calls a postulate, another calls a theorem? …

Who Moved My Postulate? Read More »

Finding the Radius of a Sphere

(An archive question of the week) An interesting question came to us in 2016, where rather than using a well-known formula, it was necessary to work out both what data to use, and how to calculate the desired radius.

Finding the Area of a Circle

Students often wonder where the formula for the area of a circle comes from; and knowing something about that can help make it more memorable, as I discussed previously about other basic area formulas.