Probability

Arranging Letters with Duplicates

(A new question of the week) Here is a recent discussion with a frequent user of our service, Kurisada, about combinatorics. He is new to the subject, so this involved several introductions to new ideas.

How Many Different Pizzas?

(An archive question of the week) We’ve been looking at examples of extended discussions with students about various kinds of problems. Here, we have one (not from a student) that led to some good thinking about combinatorics – the techniques of counting the ways something can happen.

How Many Different Meals Are Possible?

(An archive question of the week) While gathering combinatorics questions, there were several that stood out. This one will serve well to summarize the topic, showing multiple methods for counting, and contrasting other kinds of problems.

Stars and Bars: Counting Ways to Distribute Items

We have been looking at ways to count possibilities (combinatorics), including a couple ways to model a problem using blanks to fill in. Today, we’ll consider a special model called Stars and Bars, which can be particularly useful in certain problems, and yields a couple useful formulas. (I only remember the method, not the formulas.)

Permutations and Combinations: Undercounts and Overcounts

(A new question of the week) We have been looking at some combinatorics questions, both easy and challenging. Some questions have come to us in recent weeks that can illustrate how to think your way through relatively difficult problems, including catching errors and interpreting a textbook’s solutions. We’ll see yet again that there are usually …

Permutations and Combinations: Undercounts and Overcounts Read More »

Six Distinguishable People in Four Distinguishable Rooms

(An archive question of the week) Last time we looked at some elementary problems in combinatorics, where we counted the number of ways to choose or arrange elements of a set. Let’s look at a somewhat more complicated problem, which will demonstrate issues that come up in interpreting such a problem and in choosing a …

Six Distinguishable People in Four Distinguishable Rooms Read More »