Finding the Radius of a Sphere
(An archive question of the week) An interesting question came to us in 2016, where rather than using a well-known formula, it was necessary to work out both what data to use, and how to calculate the desired radius.
(An archive question of the week) An interesting question came to us in 2016, where rather than using a well-known formula, it was necessary to work out both what data to use, and how to calculate the desired radius.
Sometime soon I will do a series of posts on word problems, which are a common point of difficulty with students. But here is one recent example from a high school student, where language was the main difficulty, but the algebra is worth discussing as well. We’ll look a little more deeply into the problem …
(An archive question of the week) Last time I discussed issues that arise in solving a simple algebraic equation. In researching that, I found a discussion of solving a formula for a variable (which in some countries is called “making x the subject”, that is, changing an equation involving x into the form “x = …
Questions about solving algebraic equations are common. Here I will bring together several answers where we discussed the basic principles for solving relatively simple equations, which are important to learn well before moving on to quadratic equations and beyond.
I have often noted that calculus class is where you really learn algebra. Certain techniques in calculus demand algebraic skills that either were not taught in algebra classes (because they are not needed until you get to calculus), or have been forgotten. Chief among these is the method of partial fractions. I have here put …
(New Question of the Week) We recently had a long discussion about a very common question from a somewhat different perspective: What do exponents (zero, negative, fractional, …) actually mean? The hard part, in the end, was to decide what “mean” means. What does it mean to define something in math? I will pick out the main thread of the …
(New question of the week) A conversation last week went through a number of interesting questions, starting with a couple on percentages, and moving into some that I would call rate questions. I will extract these, which I think will be useful for others. (The rest could, too, but there was just too much there …
(Archive Question of the Week) Students commonly expect that textbooks all say the same thing (in fact, some think they can ask us about “Theorem 6.2” and we’ll know what they’re talking about!). The reality is that they can even give conflicting definitions, depending on the perspective from which they approach a topic. Here, I …
Definitions are interesting in several ways. Sometimes they are essentially arbitrary; other times there is a very good reason for them, and understanding that reason can be helpful in understanding and using them. But they are usually taught just as something to memorize. Let’s think about why slope is defined as it is, and not …
(New Question of the Week) Sometimes a problem leads to a very interesting discussion that brings out many good ideas – but then turns out to be something entirely different, which brings out even more (and simpler) ideas. This polynomial equation problem we helped with last week was like that. I will not be quoting …