Alternatives

Formulas for Standard Deviation: More Than Just One!

Last time we introduced standard deviation. Here we’ll look into why two formulas (namely, population and sample standard deviation) are different, and why several different formulas for either are equivalent. We’ll also discover how to update the standard deviation when a new value is added. In doing so, we’ll see some different perspectives than we …

Formulas for Standard Deviation: More Than Just One! Read More »

Standard Deviation and Its Rivals

We’ve had a number of questions about “measures of dispersion”, such as standard deviation, which tell us how much data spreads out, as opposed to “measures of central tendency”, which tell us where the middle of the data is (as we discussed in Three Kinds of “Average” and Mean, Median, Mode: Which is Best?). Why …

Standard Deviation and Its Rivals Read More »

Arranging Letters in Words, Revisited

A recent question illustrates well the different ways to solve problems in combinatorics. We’ll see an easy way, another easy way, and a … less suitable … way to solve a set of problems.

A Cubic Challenge

Let’s look at a nice little challenge: to find a cubic function with maximum and minimum at given locations – without using calculus. We’ll explore how to solve it with graphing software, and using algebra in a couple ways, and finally with calculus. And, surprise! They all give the same answer, though the results look …

A Cubic Challenge Read More »

When Is an Improper Integral Not an Improper Integral?

Having looked at improper integrals last time, let’s look at some questions we’ve had involving integrals that either look improper but aren’t, or are improper but were missed, or that have other issues with their interval of integration.

Rolling Dice: Three Probability Problems

Last week we examined three probability problems that had problems. Looking further back, I find that Jonathan, who asked the first of those questions, asked a group of questions about rolling multiple dice in 2022. They provide some additional lessons about easy mistakes to make.

How to Think Through Probability Problems

It’s been a while since we’ve looked at probability. Here, we’ll look at three questions that we received last year. In each case, we have to detect an error! They’re good examples of what can go wrong, and what to do when your answer appears to be wrong.

Trigonometric Equations: Finding All Solutions

A recent question dealt with how to write the general solution to a trigonometric equation. I want to combine that with an older question that will set the stage for the issue. This topic was touched on in Trigonometric Equations: An Overview.

Turning a Maximization Problem Inside-Out

Here is an interesting question we got recently, that turns a common maximization problem (the open-top box) inside-out. What do you do when you’re given the answer and have to find the problem? We’ll hit a couple snags along the way that provide useful lessons in problem-solving.

Integrating Rational Functions: Beyond Partial Fractions

A couple recent questions offered tricks for integrating rational functions, opportunistically modifying or working around the usual method of partial fractions. We have previously discussed this method in Partial Fractions: How and Why, and in Integration: Partial Fractions and Substitution, where we looked at other variations.